Facile preparation of α -amino ketones from oxidative ring-opening of aziridines by pyridine *N*-oxide

Org. Biomol. Chem., **2007**, *5*, 3428 Luo, Z.-B.; Wu, J.-Y.; Hou, X.-L.; Dai, L.-X.

Current literature 01/05/08

α -Amino ketones

Rupintrivir

(S)-2-amino-1-phenylpropan-1-one

Natural product found in leaves of Catha edulis Forsk

J. Org. Chem. 1994, 59, 8288

Shown to treat symptoms assoc. with common cold

Tetrahedron: Asymmetry 2005, 16, 699

Active against brucellosis (Malta fever)

AAC 2007, 51, 3752

Caspase-3 Caspase-7

4.0 nM

0.2 nM

Potent caspase inhibitors

Org. Lett. 2005, 7, 3529

α -Amino ketone preparation

Often important synthetic intermediates

Other methodologies include the following:

Cinchona alkaloids afford α -amino ketones in high enantioselectivity

Preparation of N-oxides

Mild oxidants, easily prepared

J. Org. Chem., 2007, 72, 6653

Chem. Commun., 2002, 1040

Other methods of *N*-oxide preparation include use of peracids, H_2O_2 , and O_2 with catalysts

Synthesis 1993, 3, 263 (and references therein)

~71 kcal/mol J. Chem. Thermodynamics **1995**, *27*, 391

Applications for N-oxides

N-oxides used to regenerate transition metal catalysts

Applications for oxides of sulfur

Applications with aziridines

Tetrahedron 1970, 26, 4347

Aziridine opened with DMSO, followed by loss of SMe₂ to afford amino ketone

Drawbacks: DMSO is often difficult to remove, in addition to noxious byproduct (SMe₂)

Recent advances

J. Org. Chem., **2003**, *68*, 9119

IBX promotes amino ketone formation, which is facilitated by β -CD

Tetrahedron Lett., 2005, 46, 4111

The CAN/NBS system allows selective oxidation to the amino ketone

Org. Biomol. Chem., **2007**, *5*, 3428.

Initial investigations tested 1-10 equiv. of DMSO in CH_2CI_2 , THF, MeCN, benzene, EtOAc, and Et_2O

Investigations using pyridine *N*-oxide (1.2 equiv.) DMF at 80°C provided the desired α -amino ketone in 60% yield

Toluene at 80°C proved to give best results (70-80% yields)

Increasing oxidant loading to 2-3 equiv. did not improve yields

Oxidative ring opening of aziridine 1b with different amine

oxides^a Τs TsHN TsHN OH Toluene + + R₃N≁O ℃ 08 1b 2 3b 4 Entry Amine *N*-oxide **2** Time/h Yield of **3b** (%) Pyridine *N*-oxide 1 24 76 2 4-Methoxypyridine *N*-oxide 5 75 3 4-Acetylpyridine *N*-oxide 40 Trace 4 3-Methylpyridine *N*-oxide 15 62 5 Collidine N-oxide 24 41 6 Quinoline *N*-oxide 15 60 7 22^b Me_3N *N*-oxide 4 8 *N*-Morpholine *N*-oxide 5 14^{b}

^{*a*} Run at 80 °C in toluene using 1.2 eq. of amine oxide. ^{*b*} 60% yield of product 4 was also separated.

Electron donating pyridines accelerated reaction, but did not increase yield

Electron withdrawing pyridines resulted in trace product after 40 h

Sterically hindered substrates such as collidine gave low yields

Table 1

Aliphatic amines gave low yields of α -amino ketones, with undesired amino alcohol in moderate yields

	R^{1}	$ \begin{array}{c} Ts \\ N \\ R^2 \end{array} $ 1	$ \begin{array}{c} $	
Entry	Aziridine	Time/h	Product	Isolated yield (%)
1	NTs 1a	24	NHTs 3a	77
2	NTs 1b	48	NHTs 3b	76
3	NTs 1c	64	NHTs 3c	Trace
4	NCOPh 1d	12	NHCOPh 3d	80

Oxidation proceeds in good yields with 5- and 6-membered rings

Table 2Oxidative ring-opening of aziridines using pyridine N-oxide⁸

$R^{1} \qquad R^{2} \qquad O \qquad $								
Entry	Aziridine	Time/h	Product	Isolated yield (%)				
5	Ph Ie	10	Ph NHTs 3e	40				
6	NTs 1f	10		55				
7"	$H_{3}C H_{11}$	20	$\begin{array}{ccc} O & & NHTs \\ \hline & C_5H_{11} & \hline & C_5H_{11} \\ NHTs & O \\ 61 & : & 39 \\ 3g & 3g' \end{array}$	74				
8"	C_6H_{13} 1h	24	$\begin{array}{ccc} C_6H_{13} & CHO & C_6H_{13} & NHTs \\ NHTs & O \\ 60 & : & 40 \\ 3h & 3h' \end{array}$	20				
9ª	Ph 1i	24	Ph Ph Ph Ph Ph $ONHTs O81 : 19$	82				

3i

3i′

Mechanism of oxidation

Mechanism explains formation of amino ketone, but not amino alcohol.

Aliphatic amine oxides provide low yields of desired amino ketone, but moderate yields of amino alcohol

7	Me_3N <i>N</i> -oxide	4	22 ^b
8	N-Morpholine N-oxide	5	14 ^b

^{*a*} Run at 80 °C in toluene using 1.2 eq. of amine oxide. ^{*b*} 60% yield of product **4** was also separated.

Proposed mechanism of oxidation

Aliphatic amine oxides have acidic hydrogen, where pyridine *N*-oxides do not

Authors did not address (or reference) the mechanism for the formation of amino alcohols Interesting method for preparing amino alcohols

Summary and Conclusions

Oxidative ring-opening of aziridines

Pyridine *N*-oxides are efficient reagents for the oxidative ring-opening of aziridines The desired α -amino ketones were obtained in good yields on various substrates Aliphatic *N*-oxides primarily afford the amino alcohol over the α -amino ketone Future work includes the development of an asymmetric version (chiral amines?)